Source code for dclab.features.contour

"""Computation of event contour from event mask"""
from collections import deque
import numbers

import numpy as np

# equivalent to
# from skimage.measure import find_contours
from ..external.skimage.measure import find_contours


class NoValidContourFoundError(BaseException):
    pass


class LazyContourList(object):
    def __init__(self, masks, max_events=1000):
        """A list-like object that computes contours upon indexing

        Parameters
        ----------
        masks: array-like
            3D array of masks, may be an HDF5 dataset or any other
            structure that supports indexing
        max_events: int
            maximum number of contours to keep in the contour list;
            set to 0/False/None to cache all contours

        .. versionchanged:: 0.58.3

            Added the `max_events` parameter which now makes this class
            a lazy, least-recently-used contour list. To achieve the
            old behavior (which may fill up your memory), set
            `max_events=None`.
        """
        self.masks = masks
        self.contours = deque(maxlen=max_events or None)
        self.indices = deque(maxlen=max_events or None)
        #: used for hashing in ancillary features
        self.identifier = str(masks[0][:].tobytes())
        self.shape = len(masks), np.nan, 2

    def __getitem__(self, idx):
        """Compute contour(s) if not already in self.contours"""
        if not isinstance(idx, numbers.Integral):
            # slicing!
            indices = np.arange(len(self))[idx]
            output = []
            # populate the output list
            for evid in indices:
                output.append(self.__getitem__(evid))
            return output
        else:
            try:
                # Is the contour already available?
                idx_q = self.indices.index(idx)
            except ValueError:
                # The contour is not there. Compute it.
                try:
                    cont = get_contour(self.masks[idx])
                except BaseException as e:
                    e.args = (f"Event {idx}, {e.args[0]}",)
                    raise
            else:
                # Get the contour from deque
                cont = self.contours[idx_q]
            # If we got here, it means that we have computed a contour
            # successfully. Store it in the deque.
            self.contours.append(cont)
            self.indices.append(idx)
            return cont

    def __len__(self):
        return len(self.masks)


[docs] def get_contour(mask): """Compute the image contour from a mask The contour is computed in a very inefficient way using scikit-image and a conversion of float coordinates to pixel coordinates. Parameters ---------- mask: binary ndarray of shape (M,N) or (K,M,N) The mask outlining the pixel positions of the event. If a 3d array is given, then `K` indexes the individual contours. Returns ------- cont: ndarray or list of K ndarrays of shape (J,2) A 2D array that holds the contour of an event (in pixels) e.g. obtained using `mm.contour` where `mm` is an instance of `RTDCBase`. The first and second columns of `cont` correspond to the x- and y-coordinates of the contour. """ if isinstance(mask, np.ndarray) and len(mask.shape) == 2: mask = [mask] ret_list = False else: ret_list = True contours = [] for mi in mask: # This is only 10% slower than doing: # conts, _ = cv2.findContours(np.array(mi, dtype=np.uint8), # cv2.RETR_EXTERNAL, # cv2.CHAIN_APPROX_NONE) # c2 = conts[0].reshape(-1, 2) conts = find_contours(mi.transpose(), level=.9999, positive_orientation="low", fully_connected="high") # get the longest contour c0 = sorted(conts, key=lambda x: len(x))[-1] # round all coordinates to pixel values c1 = np.asarray(np.round(c0), int) # remove duplicates c2 = remove_duplicates(c1) if len(c2) == 0: raise NoValidContourFoundError("No contour found!") contours.append(c2) if ret_list: return contours else: return contours[0]
def get_contour_lazily(mask): """Like :func:`get_contour`, but computes contours on demand Parameters ---------- mask: binary ndarray of shape (M,N) or (K,M,N) The mask outlining the pixel positions of the event. If a 3d array is given, then `K` indexes the individual contours. Returns ------- cont: ndarray or LazyContourList of K ndarrays of shape (J,2) A 2D array that holds the contour of an event (in pixels) e.g. obtained using `mm.contour` where `mm` is an instance of `RTDCBase`. The first and second columns of `cont` correspond to the x- and y-coordinates of the contour. """ if isinstance(mask, np.ndarray) and len(mask.shape) == 2: # same behavior as `get_contour` cont = get_contour(mask=mask) else: cont = LazyContourList(masks=mask) return cont def remove_duplicates(cont): """Remove duplicates in a circular contour""" x = np.resize(cont, (len(cont) + 1, 2)) selection = np.ones(len(x), dtype=bool) selection[1:] = ~np.prod((x[1:] == x[:-1]), axis=1, dtype=bool) return x[selection][:-1]